EISC Architecture:
Computer Architecture for Era of Post PC
Agenda

- EISC Processor Overview
 - Trends
 - EISC: Extendable Instruction Set Computer
 - EISC processors
- AE32000; 32-bit EISC processor
 - AE32000 Features
 - AE32000 Microarchitecture
Development Cycle in Microprocessor

- **CISC**: Complex Instruction Set for Mini & Desktop PC
- **RISC**: Reduce Instruction Set for Desktop & Server System
- **EISC**: Extended Instruction Set for Post-PC Devices

http://www.adc.co.kr
Complex Instructions
- Easy programming with Assembly Code
- Many instructions for many situations

Variable Length Instruction
- Complex for hardware Implementation
- Various execution time for each instruction
- Reduced Instruction Set
 - Weak point of CISC
 - Part of commands are used even though existing of many commands
 - Hardware consumption for rarely executing commands
- Make Common Case Faster!
 - Reduce # of Instructions
 - Take advantage of Compiler Technology and Pipeline architecture
 - Simple & Efficient Hardware
Post-PC Era.

- **Devices**
 - Emergence of various digital equipments
 - Embedded System!
 - “An embedded system is a special-purpose system in which the computer is completely encapsulated by the device it controls” [wikipedia].
 - Embedded microprocessor.

- **Requirements**
 - Low cost
 - Appropriate performance for required operation
 - High power efficiency
Embedded Microprocessor

- General Microprocessor
 - 32-bit/64-bit Microprocessor
 - Accelerating for various jobs
 - Performance centered

- Embedded Microprocessor
 - System control by embedded in system
 - Executing of Special jobs

Desktop/Server Microprocessor

Cost

Performance
Increasing of Required performance
- Interconnection of complex peripherals
- Increasing of number of control units
- Requirement of network connection

Requirement for DSP operation
- Multimedia application
- Graphic user interface

General Microprocessor

Modern Embedded Microprocessor

Classical Embedded Microprocessor

Desktop/Server Microprocessor

EISC
Advanced Digital Chips Inc.

http://www.adc.co.kr
5 Criteria for Modern Embedded Microprocessors

- Low Power
- Code Density
- Peripheral Integration
- Price/Performance ratio
- Multimedia Acceleration

M.Schlett

http://www.adc.co.kr
Embedded Microprocessor

- **Code Density**
 - Inverse of static code size
 - Static code size
 - Memory size for storing program
 - Code size + Initialized static data

- **High code density**
 - Small memory size requirement for same program storing
 - Reducing memory size
 - Reducing power consumption for command call
 - Reducing performance degradation for memory access
 - Accessing time difference between memory and processor
 - High efficiency of instruction cache

http://www.adc.co.kr
Embedded Microprocessor

- Code Density
 - Low Power
 - Price-Performance Ratio

Low Power

Price / Performance ratio

http://www.adc.co.kr
Embedded Microprocessor

- Multimedia Acceleration;
- Restriction
 - Price-Performance Ratio
 - Low Power

Low Power

Price-Performance ratio

http://www.adc.co.kr
Code Density

- One of the most important metric

CISC vs RISC, and...

- CISC; Variable Length Code
 - Various instruction for each case
 - Various instruction length
 - High code density
- RISC; 32-bit Fixed field instruction
 - Using of same code
 - Low code density
Improving Code Density

- Instruction Compressing
 - Using lossless compress method
 - Increasing hardware cost
 - High interoperability

- ISA using short instruction
 - Short-length Instruction
 - Problem of interoperability

- Simple hardware
- Low code density

RISC

Compressed Code RISC

Code Compression

http://www.adc.co.kr
Improving Code Density

- Code Compression
- RISC
- Compressed Code RISC
- Hybrid
- 16-bit/32-bit Code
 - Defining new command
 - Swap of common mode
- 16-bit Compressed Code
 - Defining new instruction
- Compressed Code RISC
 - Long word control by short instruction
 - 16-bit/24-bit instruction set, 32-bit data
- Short Instruction
 - Restriction of size of bit for command encoding
- Command Encoding
 - OP-code + Operand
Operands
- Operation between Registers requires small bits
 - Same bit requirement for number of register
- Immediate/Offset
 - Constant value for operation
 - Offset of indexed addressing

Length of Immediate/Offset
- Varying for instructions (up to 32bit)
- High utilization of short immediate value, low utilization of long immediate value
Improving Code Density

- Compressed code architecture
 - Lack of command filed for immediate value

- RISC based architecture
 - Case of long immediate value is required
 - Execute after moving immediate value to general register
 - Combination of multiple “LDI–SHIFT–ORI” commands
 - Complicate procedure
 - Load after locating immediate value to static data area
 - Require of data access
 - Reserve as many bits for immediate value
EISC: Extendable Instruction Set Computer

- Extend immediate value at Special purpose register or Extension Register (ER)
- LERI Instruction; Command for load/store from/to ER
 - Elimination of general register using and combination of complex Instructions

Immediate value of Instruction

- Assigning suitable size by workload analysis
- <20% instrs.

80% Instr. w/o LERI
20% Instr. w/ LERI
LERI makes long immediate

<table>
<thead>
<tr>
<th>LERI</th>
<th>IMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>E-Flag</td>
<td>Extension Reg.</td>
</tr>
</tbody>
</table>
LERI makes long immediate

LD DST IDX IMM

SET E-Flag

IMM Extension Reg.

http://www.adc.co.kr
LERI makes long immediate
Assigning immediate by LERI
- LERI itself is fixed length instruction

Elimination of complex procedure for immediate value access
- Low burden for long immediate
 - Assign relatively small size of bit for immediate
 - Increasing of bit size for opcode → Increasing number of instruction
 - Increasing of bit size for register indexing
- Increasing available general register
 - 16 GPRs
 - ARM–THUMB; 8GPRs
- No GPR for immediate value
Selection freedom for instruction type

- Selection according to use LERI or not
 - Instruction such as `addq` is assigned if the short immediate values are frequently used
- Good for long immediate operation
 - DSP

General `u-proc.`

- `sub`:
 - `$Rd = $Ra - Rd
- `subi`:
 - `$Rd = $Ra - Rd`

EISC

- `sub`:
 - `$Rd = $Ra - Rd
- `leri/sub`:
 - `$Rd = $Rd - $Ra - $immediate$`
Impact of LERI

- Media benchmarks

Instruction Distribution

LERI: about 15%

http://www.adc.co.kr
Impact of LERI

- EEMBC: Automotive, Consumer, Telecomm, Network, Office

LERI: about 12%
EISC Architecture

11.5% higher code density than ARM9TDMI

6.5% higher code density than MIPS16

Benchmark: libc, libm, libstdc++
Average 18.9% higher code density

Mediabench, gcc3.2
Memory Access

- 16GPRs
 - Most of Compressed Code RISC; 8 GPRs

- EISC can make long immediate easily
 - Most normal RISCs have multiple commands for 32bit immediate value
 - LUI, ORI sequence (MIPS)
 - memory LOAD

<table>
<thead>
<tr>
<th></th>
<th>AE32K</th>
<th>TR4101</th>
<th>ARM9TDMI</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCD</td>
<td>1.00</td>
<td>1.07</td>
<td>1.13</td>
</tr>
<tr>
<td>Memory Access Ratio</td>
<td>30.2%</td>
<td>48.4%</td>
<td>46.5%</td>
</tr>
</tbody>
</table>

35% less data-memory access than ARM9TDMI & MIPS16
Processor Family

High End
Microprocessor
- 50+ MIPS
- Robot Control
- Media Processing

Main Stream
Microprocessor
- 50+ MIPS
- Control and Data processing
- General OS Support

Low End
Microcontroller
Under 50 MIPS, for Control purpose

http://www.adc.co.kr
EISC architecture
- We believe it is right ISA for post-PC market
- LERI instruction
 - Flexibility
 - Makes instruction more compactor
- Better code density
Thank you...