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History
The followings have same cardinality.

Tn+1 = trees with n + 1 vertices
Fn = forests with n vertices
PFn = parking functions with length n

Sn = Shi arrangements of length n

F(n+1) = cycle factorizations of length n + 1

Qn = allowable pairs of length n

We knew that the number of these are all (n + 1)n−1. Actually,
we tried finding the bijection among them and, of course, there
are many various bijections that we found.
But we need a new bijection for the next problem.
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Question
R. Stanley wrote the following open problem in his lecture note
‘Hyperplane Arrangement’

Exercise
6.4 Find a bijection proof of Theorem 6.22, i.e., find a bijection ϕ between the set of all
rooted forests on [n] and the set PFn of all parking functions of length n satisfying

inv(F) =

(
n + 1

2

)
− a1 − · · · − an

when ϕ(F) = (a1, . . . , an).

NOTE. In principle a bijection ϕ can be obtained by carefully analyzing the proof of

Theorem 6.22. However, this bijection will be of a messy recursive nature. A

“nonrecursive” bijection would be greatly preferred.
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Answer
G.Kreweras connected recursively inversion enumerators
for tree, In(t), with parking functions (1980).

In(t) =
∑

T∈Tn+1

tinv(T)

where tree with (n + 1) vertices and root ‘0’.
The recursive proof is also written in R.Stanley’s lecture
note (2004).
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Objective
We’ll find the answer of the previous question.

ϕ : Fn → PFn

F ↪→ P = ϕ(F)

inv(F) = jump(P) =
(n+1

2

)
− |P|

lead(F) = lucky(P)

Moreover, we have∑
F∈Fn

qinv(F)ulead(F) =
∑

P∈PFn

qjump(P)ulucky(P).
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Tree I

Definition (Tree)
Tree = simple graph, connected, no cycles
Labeled Tree = tree, vertices are labeled
Rooted Tree = tree, only one vertex is chosen as root.

NOTE. If we need to deal with a root in an unrooted labeled
tree, then we consider the maximum vertex as a root, that is, an
unrooted labeled tree is assumed as a rooted labeled tree with
the root.
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Tree II
EXAMPLE.

2

1

4

6

3

5

2

4 1

6

35

NOTE.
1 From now on, ‘unrooted labeled tree’ is called shortly ‘tree’.
2 When we draw a ‘rooted labeled tree’, usually draw the

root at the top.
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Tree III
Definition
Tn = the set of unrooted labeled trees with n vertices

Theorem (Cayley formula)

|Tn| = nn−2

PROOF. This is proved by Prüfer Algorithm or Prüfer Code.
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Forest I

Definition (Forest)
Forest = simple graph, no cycles (not necessarily connected)

NOTE. Forest is consisting of trees. Because each connected
component is tree.

Definition
Labeled Forest = forest, consisting of labeled trees
Rooted Forest = forest, consisting of rooted trees

2006.8.10 The bijection between forests and parking functions (13 / 59) H. Shin
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Forest II
Definition
Fn = the set of rooted labeled forests on n vertices

Theorem

|Fn| = (n + 1)n−1

PROOF. It’s clear. Because we get the rooted forest naturally
from the unrooted tree by deleting the maximum vertex. In this
way, the number of vertices is decreasing by 1. Then

|Tn+1| = |Fn| .
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Forest III
NOTE.

1 From now on, ‘rooted labeled forest’ is called shortly
‘forest’.

2 We can change a tree to the forest by deleting the
maximum vertex in the tree.
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Example

6

2

3

4

5

1
2

5 1

34

deleting

Unrooted tree −→ Rooted forest
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Inversion in tree

Definition
Inversion in tree = ordered pair (i, j) s.t. i > j and j is a
descendant of i

inv(T) = the # of inversions in T

inv(T : v) = the # of inversions in T of form (v, x) where
v > x and x is a descendant of v

REMARK. inv(T) =
∑

v inv(T : v).

NOTE. j is a descendant of i
= i lies on the unique path from the root to j

2006.8.10 The bijection between forests and parking functions (17 / 59) H. Shin
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Inversion in forest

Definition
Inversion in forest = ordered pair (i, j) s.t. i > j and j is a
descendant of i

inv(F) = the # of inversions in F

inv(F : v) = the # of inversions in F of form (v, x) where
v > x and x is a descendant of v

REMARK. inv(F) =
∑

v inv(F : v).

NOTE. This is well-defined since a forest is consisting of trees.
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Leader in tree and forest

Definition
Leader in tree T = the vertex v where inv(T : v) = 0

= the smallest vertex among its all descendants.
lead(T) = the # of all leaders in T

NOTE. By definition, all leaf is leader.

Definition
Leader in forest F = the vertex v where inv(F : v) = 0

= the smallest vertex among its all descendants.
lead(F) = the # of all leaders in F

2006.8.10 The bijection between forests and parking functions (19 / 59) H. Shin



Introduction Definitions The Map ϕ Conclusion

Example
Look at this rooted tree T with root 4.

1

3 2

4

56

(4, 3), (4, 1), (4, 3) are inversions of T

All vertices are leaders of tree T except 4.
inv(T) = 3 and lead(T) = 5
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Remark
In [6, Seo & S], we proved combinatorially by RP-code∑

T∈Tn

ulead(T)cdegT(1) = uPn−1(1, u, cu)

where Pn(a, b, c) = c
n−1∑
i=1

(ia + (n − i)b + c). Also, we know that

each number of leaders and vertices is decreased by 1 when
unrooted tree is changed to a forest by deleting the minimum
vertex ‘1’. Hence we deduce that∑

F∈Fn

ulead(F)ctree(F) = Pn(1, u, cu)

where tree means the number of trees in a forest.
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Prüfer order I
We think about the order of the vertices in trees and
forests.
In making Prüfer Code from a tree, we remove the smallest
leaves. In this time, we naturally get the order of deleting
vertices. The first vertex is the smallest leaf and the last
vertex is the maximum vertex (root) in unrooted tree. We
will call it ‘Prüfer order’.
RP-order means ‘Reverse Prüfer order’, that is, really the
reverse order of Prüfer order. Trivially, the first in RP-order
is the maximum vertex (root) in unrooted tree.

2006.8.10 The bijection between forests and parking functions (22 / 59) H. Shin
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Prüfer order II
We know RP-order of vertex in tree by traveling toward to the
largest unvisiting vertex from maximum vertex (root) in an
unrooted tree (or the root in rooted tree).

2

1

4

6

3

5

Prüfer order : 1 → 3 → 4 → 2 → 5 → 6
RP-order : 6 → 5 → 2 → 4 → 3 → 1
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The method by drawing tree
We want to fix the shape of tree in one way.
Draw the root at the top. We consider the maximum as the
root in an unrooted tree.
If we draw children, put children from earliest to latest
RP-order among sibling from left to right.
It seems that the shape of tree is figured as a rooted
ordered tree after drawing.

2

1

4

6

3

5

2

4 1

6

35
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Parking Algorithm I
1 There are infinitely many parking spaces whose entrance is at the left.

4©3© 7©5© 6©1© 2©

Entrance
This is a one-way road

2 This parking space is an one-way road from left to right and do not
allow that car is going back.

3 Each car has its favorite parking space.
4 Two or more cars cannot be parked at one parking space.
5 Cars can be parked one by one from the first car to last car.
6 When a car is parked, a car drives at its parking space. And then,

attempt to be parked at its favorite parking space. If the space is empty,
the car is parked. Otherwise, attempt again at the next parking space.
Repeat this process until the parks.

2006.8.10 The bijection between forests and parking functions (26 / 59) H. Shin
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Parking Algorithm II
Given a sequence (p1, p2, . . . , pn) of length n, where pi means
the favorite parking space of the i-th car, we will park n cars into
parking spaces by previous rules. This method is called a
Parking Algorithm and the notation PA is used as the function
name.

EXAMPLE. Given a sequence (4, 3, 3, 1, 5), 5 cars are parked by
the Parking Algorithm as following.

4©3© 7©5© 6©1© 2©
12 34 5∅ ∅

Parking Space

Cars’ Number

We get a infinite sequence

PA(4, 3, 3, 1, 5) = (4, ∅, 2, 1, 3, 5, ∅, ∅, . . .).

2006.8.10 The bijection between forests and parking functions (27 / 59) H. Shin
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Parking Function I

Definition (Parking Function)
If every car can be parked at one of first n parking spaces,
the sequence P = (p1, p2, . . . , pn) used in Parking Algorithm
is called a parking function.
PFn = the set of parking functions with length n

Theorem

|PFn| = (n + 1)n−1

2006.8.10 The bijection between forests and parking functions (28 / 59) H. Shin
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Parking Function II
Another Definition
Given a sequence P = (p1, p2, . . . , pn), the followings are
equivalent.

1 P is a parking function.
2 PA(P) can be considered as a permutation of length n.
3 For all k 6 n, # {i | pi 6 k} > k.
4 If p ′

1 6 p ′
2 6 · · · 6 p ′

n is the rearrangement of P, then p ′
k 6 k

for all k.

2006.8.10 The bijection between forests and parking functions (29 / 59) H. Shin
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Jump in parking function

Definition
Jump in parking function = the attempt to park the next
space because of a non-empty parking space
jump(P : c) = the # of the jumps only to park car c

= Qc − Pc where Q = PA(P)−1

jump(P) = the # of the jumps to park all cars
=

∑
c jump(P : c)

NOTE.

jump(P) =
∑

c

jump(P : c) =
∑

c

Qc − Pc =

(
n + 1

2

)
− |P|

2006.8.10 The bijection between forests and parking functions (30 / 59) H. Shin
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Lucky in parking function

Definition
Lucky car in parking function P

= the car c where jump(P : c) = 0
= the car which is parked at its favorite parking space

lucky(P) = the # of all lucky cars in P

2006.8.10 The bijection between forests and parking functions (31 / 59) H. Shin
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Example
Let P = 2© 4© 2© 1© 3© be a parking function. After parking,

PA(P) = 4 1 3 2 5

Qc 1© 2© 3© 4© 5©
c 4 1 3 2 5

Pc 1© 2© 2© 4© 3©
Qc − Pc 0 0 1 0 2

jump(P : 3) = 1 and jump(P : 5) = 2

Lucky cars are 1, 2 and 4.
lucky(P) = 3 and jump(P) = 3

2006.8.10 The bijection between forests and parking functions (32 / 59) H. Shin
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Diagram of ϕ and ϕ−1

ϕ : F // T
θF //

��?
??

??
??

?

��

D // P

I // C − I

<<yyyyyyyy

C

DD

ϕ−1 : P
PA // PA(P) //

""EE
EE

EE
EE

E

��

D // T // F

I

@@��������

C
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12

3

4

5

6

78

9

10
11121314

F

We consider F ∈ F14 for example. Of course, F is drawn in the
method we decide.
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12

3

4

5

6

78

9

10
11121314

15T Add 15-th vertex.

Add the vertex 15 at the top and change the forest F to the tree
T.
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12

3

4
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6

78

9

10
11121314

15T

v

m
8

13

12

1

for all v ∈ V do
1 find the maximum label m on descendants of v.
2 label m on v.
3 rearrange the other labels in descendants of v by

order-preserving.
end do
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12

5

3

14

4

1113

6

9
781210

15D θF(v)

The decreasing tree is made after the process for every vertex.
But we cannot remake the original tree T from only tree D. So,
we need another tree induced from the unused information of T.
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00

0

0

3

0

01

0

0 0102

14I inv(T : v)

And then, label inv(T : v) on vertex v. In order to distinguish it
from other labels, we use the box (or blue color). And then, the
trees D and I can produce the original tree T.
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10©2©

7©

6©

8©

5©

14©12©

1©

4©
13©11©9©3©

15©C indexed by post-order

Label the vertices indexed by post-order which is indicated by
circle (or brown color). The tree C is determined by only the
underlying graph, that is, its tree structure. This is the reason
why we define the method we draw the tree.
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12 34

5

6

78910

11

12

1314

15 1©

5©

1©

1© 2© 5© 6©

9©

10©

10© 13©

14©11©

7©4©

D× (C − I)

The plain labels are induced by D.
The circled labels are induced by C subtracted by I.
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And then, we delete the tree structure and sort by plain #.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
10© 2© 6© 5© 7© 1© 13© 10© 4© 1© 14© 9© 11© 5© 1©

Below the plain label 15, there is always circle label 1©. So, we
can omit it, and then second row (circle label) becomes a
parking function P of length 14.

P = 10© 2© 6© 5© 7© 1© 13© 10© 4© 1© 14© 9© 11© 5©

Because all labels of C are distinct in worst case which means
every labels of I is all zero. Note that every permutation is a
parking function.

2006.8.10 The bijection between forests and parking functions (42 / 59) H. Shin
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Summary of the map ϕ

12

3

4

5

6

78

9

10
11121314

F

12

3

4

5

6

78

9

10
11121314

15T Add 15-th vertex.

12

5

3

14

4

1113

6

9
781210

15D θF (v)

00

0

0

3

0

01

0

0 0102

14I inv(T : v)

10©2©

7©

6©

8©

5©

14©12©

1©
4©

13©11©9©3©

15©C indexed by post-order

12 34

5

6

78910

11

12

1314

15 1©

5©

1©

1© 2© 5© 6©

9©

10©

10© 13©

14©11©

7©4©

D× (C − I)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P= 10© 2© 6© 5© 7© 1© 13© 10© 4© 1© 14© 9© 11© 5© 1©
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Inverse Map of ϕ

Let P = 10© 2© 6© 5© 7© 1© 13© 10© 4© 1© 14© 9© 11© 5©
After adding the 1© at the end, 15 cars is parked as following by
the parking algorithm.

Parking Space 1© 2© 3© 4© 5© 6© 7© 8© 9© 10© 11© 12© 13© 14© 15©
Cars’ Number c 6 2 10 9 4 3 5 14 12 1 8 13 7 11 15
jump(P : c) 0 0 2 0 0 0 0 3 0 0 1 1 0 0 14

We draw a edge between car c and the closest car on its right
which is larger than c. If we consider 15 as a root, we can
rebuild the tree structure and find trees C, D and I.

2006.8.10 The bijection between forests and parking functions (44 / 59) H. Shin
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Relations of statistics

We analyze the map ϕ, then we know the followings.
inv(F : v) = jump(ϕ(F) : θF(v))

If v is a root of a tree in F, then θF(v) is a right-to-left
maximum in PA(ϕ(F))
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Corollary

If P = ϕ(F), these facts are induced automatically.
inv(F) = jump(P)

lead(F) = lucky(P)

tree(F) = critical(P)

where tree(F) is the # of trees in forest F and
critical(P) is the # of right-to-left maximums in PA(P).

NOTE. The car c is called critical if there is no empty parking
space on the right of car c after parking car c.
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Main Result I
In = homogeneous polynomials of degree n

In(q) = In(q0, q1, q2, . . .) =
∑
F∈Fn

qt0(F)
0 qt1(F)

1 qt2(F)
2 · · ·

where ti(F) = the # of vertices v s.t. inv(F : v) = i,
especially, t0(F) = lead(F) and

∑
i ti(F) = n.

Jn = homogeneous polynomials of degree n

Jn(q) = Jn(q0, q1, q2, . . .) =
∑

P∈PFn

qs0(F)
0 qs1(F)

1 qs2(F)
2 · · ·

where si(F) = the # of cars c s.t. jump(P : c) = i,
especially, s0(P) = lucky(P) and

∑
i si(F) = n.

2006.8.10 The bijection between forests and parking functions (49 / 59) H. Shin



Introduction Definitions The Map ϕ Conclusion

Main Result II
Theorem (Main Theorem)

In(q) = Jn(q)

PROOF. For P = ϕ(F), there is the correspondence θF between
all vertices v in the forest F and all cars c in the parking function
P such that

inv(F : v) = jump(P : c)

= jump(ϕ(F) : θF(v))

Because each labels of tree I means inversions of forest F and
jumps of parking function P.
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Corollary I

Corollary ∑
F∈Fn

qinv(F)ulead(F) =
∑

P∈PFn

qjump(P)ulucky(P)

PROOF. By theorem, In(u, q, q2, . . .) = Jn(u, q, q2, . . .).

inv(F) =
∑

i i · ti(F)

lead(F) = t0(F)

jump(P) =
∑

i i · si(P) =
(n+1

2

)
− |P|

lucky(P) = s0(P)
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Corollary II
Recall that ∑

F∈Fn

ulead(F)ctree(F) = Pn(1, u, cu).

By the map θF, the root of each tree in F corresponds to
right-to-left maximums in PA(P). So, we have∑

F∈Fn

ulead(F)ctree(F) =
∑

P∈PFn

ulucky(P)ccritical(P).

Corollary ∑
P∈PFn

ccritical(P)ulucky(P) = Pn(1, u, cu).

2006.8.10 The bijection between forests and parking functions (52 / 59) H. Shin



Introduction Definitions The Map ϕ Conclusion

Conclusion

Theorem (Expansion of main theorem)

In(q : c) = Jn(q : c)

where

In(q : c) =
∑
F∈Fn

qt0(F)
0 qt1(F)

1 qt2(F)
2 · · · ctree(F)

Jn(q : c) =
∑

P∈PFn

qs0(F)
0 qs1(F)

1 qs2(F)
2 · · · ccritical(P)

REMARK. Also, we get∑
F∈Fn

qinv(F)ulead(F)ctree(F) =
∑

P∈PFn

qjump(P)ulucky(P)ccritical(P)
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Summary
Forests and Parking Functions have not only the same
cardinality, but also many equinumerous statistics.
There exists the map ϕ which corresponds simultaneously
between statistics inv, lead and tree in forests and statistics
jump, lucky and critical in parking functions.
There exists not only the correspondence ϕ of
combinatorial objects, but also the correspondence θ

between vertices in forests and cars in parking functions in
detail.
Now to conclude, forests and parking functions are very
similar and the same structures.
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Further Study
Mark D. Haiman found that there exists the duality of
inversions in a tree structure by the dimension of group
representation.
No one know yet what the duality of inversions means in a
tree structure.
Can you maybe find a duality of jumps in parking
functions?
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